
ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 3, March 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3346 192

Efficient FPGA Implementation of Variable

precision floating point Arithmetic using VHDL

Language

Mr. Varun
1
, Dr. Vinod Kapse

2

M Tech (VLSI Design), GGITS, Jabalpur1

Head EC, GGITS, Jabalpur2

Abstract: Computers were originally built as fast, reliable and accurate computing machines. It does not matter how

large computers get, one of their main tasks will be to always perform computation. Most of these computations need

real numbers as an essential category in any real world calculations. Real numbers are not finite; therefore no finite,

representation method is capable of representing all real numbers, even within a small range. Thus, most real values

will have to be represented in an approximate manner. The scope of this paper includes study and implementation of

Adder/Subtractor and Multiplication ,Division and Square root functional units using HDL for computing arithmetic

operations and functions suited for hardware implementation. In this paper, we present pipelined architecture to

implement Variable bit floating point Arithmetic in Field Programmable Gate Array (FPGA). Specially we designed

square root of floating point numbers using modified non restoring square root algorithm. This algorithm has been

optimized by eliminating a number of elements without compromising the precision of the square root and the

remainder. The algorithms are coded in VHDL and validated through extensive simulation. These are structured so that
they provide the required performance i.e. speed and gate count. It is an improvement over non restoring algorithm as it

uses only subtract operation and append 01 instead of add operation and append 11. Here the basic building block is

Controlled Subtract Multiplex (CSM). By using this module, the algorithm can be designed for any number of input

bits. This strategy offers an efficient use of hardware resources. The modified non restoring algorithm is designed using

VHDL and implemented on ALTERA cyclone II FPGA. The implementation results show reduced area in terms of

logic elements when compared to restoring algorithm.

Keywords: ALTERA cyclone II FPGA, CSM, VHDL

I. INTRODUCTION

Nowadays, floating point Arithmetic is very important for

several applications in digital signal and image processing,

computer graphics and scientific computing . But division

and square root is the most time consuming operation

among four arithmetic operations.

Designing a high-speed reciprocal unit is very useful for

division operation because the division can be replaced as
the following method: the reciprocal of divisor is

computed at first, and then it is used as the multiplier in a

subsequent multiplication with the dividend.

If several divisions by the same divisor need to be

performed, this method is particularly efficient, since once

the reciprocal of divisor is found for the first division, each

subsequent division involves just one additional

multiplication.

The square root function is widely used in computer
graphics, image and signal processing, statistics,

communications and scientific calculation applications.

Due to complications involved in implementation of

square root algorithms, its design in digital system has

always been a bottleneck. The basic operations like

addition and subtraction are easy to implement in an

FPGA because synthesis tools have optimized

addition/subtraction units based on FPGA architecture.

Multiplication, division and square root are complex

operations; square root in particular, is computationally

intensive as it involves convergence and approximation

techniques.

Many algorithms/methods have been developed to
implement it on FPGAs. But there is a need of an

algorithm which should be more efficient in terms of time,

speed and on-chip area.

During the recent years field programmable gate arrays

(FPGA’s) have become the dominant form of

programmable logic. In comparison to previous

programmable devices like programmable array logic

(PAL) and complex programmable logic devices

(CPLD’s), FPGA’s can implement far larger logic

functions.

 FPGA’s supports sufficient logic to implement complete

systems and sub-systems. FPGA exploit the increasing

capacity of integrated circuits to provide designers with

reconfigurable logic that can be programmed on

application-specific basis.

ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 3, March 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3346 193

Fig 1. Flow graph of Proposed design

In this paper, we study restoring and modified non

restoring square root algorithm and implement them using

pipelined architecture in VHDL. This approach uses CSM

as a basic building block. The block has been modified for
implementing restoring algorithm. These blocks have been

optimized to reduce the number of logic cells utilized. The

performance is compared based on logic elements and

power consumption using ALTERA Stratix-II FPGA.

Variable Length Floating Point Addition/subtraction

Module

Floating Point Addition is one of the complex unit in the

floating point arithmetic operations. Addition / subtraction

is the most basic arithmetic operation. The hardware

implementation of this arithmetic for floating point

numbers is a complicated operation due to the requirement
of normalization. A proposed implementation method of

Variable bit floating point adder/subtractor has been

shown here. The flowchart for Floating Point

adder/subtractor is shown in Fig. 1. Here the term addition

is used to refer to both addition and subtraction as the

same hardware is used in both cases.

The steps for computing addition of two floating point

numbers proceeds as follows,

1. Compare exponents and mantissa of both
numbers. Decide large exponent & mantissa and small

exponent & mantissa.

2. Right shift the mantissa associated with the

smaller exponent, by the difference of exponents.

3. Add both mantissa if signs are same else subtract

smaller mantissa from large one.

4. Do the rounding of the result after mantissa

addition.

5. If the subtraction results in loss of most

significant bit (MSB), then the result must be normalized.

To do this, the most significant non-zero entry in the result
mantissa must be shifted until it reaches the front. This is

accomplished by a “Leading one detector (LOD)”

followed by a shift.

6. Do normalization and adjust large exponent

accordingly.

7. Final result includes sign of larger number,

normalized exponent and mantissa.

Implementation of Floating Point Multiplier

Floating Point Multiplication Algorithm

Multiplying two numbers in floating point format is done
as follows.

1. Adding the exponent of the two numbers then

subtracting the bias from their result.

2. Multiplying the significand of the two numbers.

3. Calculating the sign by XORing the sign of the

two numbers.

Fig. 2 Flow Chart of Variable Length Floating Point

Addition/ subtraction Module

In order to represent the multiplication result as a

normalized number there should be 1 in the MSB of the

result (leading one).The following steps are necessary to
multiply two floating point numbers.

1. Multiplying the significand, i.e., (1.M1*1.M2) .

2. Placing the decimal point in the result .

3. Adding the exponents, i.e., (E1 + E2 – Bias) .

4. Obtaining the sign i.e. s1 xor s2 .

5. Normalizing the result, i.e., obtaining 1 at the

MSB of the results ‟significand” .

6. Rounding the result to fit in the available bits .

7. Checking for underflow/overflow occurrence.

ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 3, March 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3346 194

Fig. 3 Multiplier structure with rounding and exceptions

To Perform the Division Operation in VHDL

The algorithm for floating point multiplication is

explained through flow chart in Figure 4. Let N1 and N2

are normalized operands represented by S1, M1, E1 and

S2, M2, E2 as their respective sign bit, mantissa

(significand) and exponent. If let us say we consider

x=N1 and d=N2 and the final result q has been taken as
“x/d”.

Fig 4. Flow Chart of Division Operation

Again the following four steps are used for floating point

division.

1. Divide signifcands, subtract exponents, and

determine sign
M=M1/M2

E=E1-E2

S=S1XORS2

2. Normalize Mantissa M (Shift left or right by 1)

and update exponent E

3. Rounding the result to fit in the available bits

4. Determine exception flags and special values

The sign bit calculation, mantissa division, exponent

subtraction (no need of bias subtraction here), rounding

the result to fit in the available bits and normalization is
done in the similar way as has been described for

multiplication.

Pipelining is a well known technique for achieving faster

clock rates while sacrificing latency. Pipeling offers an

economic way to realize temporal parallelism in digital

systems. To achieve pipelining one must subdivide the

input process into a sequence of subtasks each of which

can be executed by specialized hardware stage that

operates concurrently with other stages in the pipeline. In

the present method, five stage pipelining is incorporated

for faster performance.

The square root algorithm

A small modification in non restoring algorithm makes

calculation faster. It uses only subtract operation and

appends “01”. It uses n stage pipelining to find square

root of 2n bit number. The following algorithm describes
the modified non restoring square root algorithm.

Step 1: Start

Step 2: Initialize the radicand (M) which is 2n bit number.

 Divide the radicand in two bits beginning at

decimal

 point in both directions.

Step 3: Beginning on the left (most significant), select the

first

 group of one or two bits. (If n is odd then first

group

 has one bit, else two bits.)

Step 4: Select the first group of bits and subtract‟ 01‟ from
it.

 If borrow is zero, result is positive then quotient

is 1

 otherwise it is 0.

Step 5: Append 01(to be subtracted next two bits of

dividend)

 and quotient to subtract from remainder of

previous

 stage.

Step 6: If result of subtraction is negative, write previous

 remainder as it is and quotient is considered as 0,
else

 write the difference as remainder and quotient as 1.

Step 7: Repeat step 5 and step 6 until end group of two

bits.

Step 8: End.

Fig 5. Internal structure of CSM block

From Fig. it is clear that Controlled Subtract

Multiplex(CSM) is a combination of full subtractor and

2:1 multiplexer. Multiplexer is used to select one of the

inputs based on one bit quotient which acts as a select line

for multiplexer.

From the algorithm, it can be concluded that if the result

of subtraction is negative (which will set the borrow bit to

1), quotient “u” is selected as 0 which ultimately selects

the input “x” for the next iteration. Also if the result of

subtraction is positive which gives 0 as a borrow, quotient

ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 3, March 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3346 195

is selected as 1. This sets select line to 1 which gives

difference “d” as input for next iteration.

Inputs to the CSM block are x, y, b and u whereas d and b0

(borrow) are outputs.

If b0 = 0,

then d < = x-y-b else d < = x.

As CSM includes full sub tractor having x, y and b as its

inputs, it works as follows:

1) It performs subtraction : x- y - b

2) If the result of subtraction is positive, we get b0 = 0, u
=1 and d = x-y-b

3) If the result of subtraction is negative, we get b0 = 1,

The generalization of simple implementation of modified

non restoring digit by digit algorithm for unsigned 6 bit

square root is shown in Fig. For 6 bit input number, 3 bit

quotient(u2u1u0) is obtained as answer.

Each row of the circuit executes one iteration of non

restoring digit by digit square root algorithm, where it only

uses subtract operation and appends „01‟. In the pipelined

structure using CSM block, some input patterns are fixed.

So , the design can be optimized by minimizing the

Boolean equations of b0 and d. It can be implemented by
modifying CSM block

Fig. 6. Pipelined structure of 6 bit unsigned square root

number.

EXPERIMENTAL RESULT

The proposed architecture was implemented using VHDL

and synthesized on a Altera Stratix II FPGA with

simulation on the Quartus-II . Some sample result is
shown in Tab1.

Table 4.1: Area, Latency and Throughput for Floating-

Point Division
F P Format 8(2,5) 16(4,11) 24(6,17) 32(8,23) 40(10,29)

slices 66

(1%)

115

(1%)

281

(1%)

361

(1%)

617 (1%)

Block

RAMs

1

(1%)

1 (1%) 1 (1%) 7 (4%) 62 (43%)

embdd
multipliers

2

(1%)

2 (1%) 8 (5%) 8 (5%) 8 (5%)

clock
period (ns)

4.9 6.8 7.8 7.7 8.0

max freq.

(MHz)

202 146 129 129 125

latency (clk
cycle)

10 10 14 14 14

latency (ns) 49 68 109 108 112

Table 4.1: Area, Latency and Throughput for Floating-

Point Square root.
F P
Format

8(2,5) 16(4,11) 24(6,17) 32(8,23) 48(10,38)

slices 85

(1%)

172

(1%)

308

(1%)

351

(1%)

779 (2%)

Block
RAMs

3

(2%)

3 (2%) 3 (2%) 3 (2%) 13 (9%)

embdd
multiplier

4

(2%)

7 (4%) 9 (6%) 9 (6%) 16 (11%)

clock
period (ns)

 6.1 7.2 7.8 8.0 8.8

max freq.
(MHz)

165 139 129 125 114

latency
(clk cle)

9 12 13 13 16

latency
(ns)

55 86 101 104 140

Comparison of our Floating-Point Divide and Square

Root and Xilinx Floating-Point IP Cores

The algorithms we use are not digit-recurrence as are most

other divider and square root implementations. As a result,

the latency does not increase linearly as the data bitwidth

grows. Our goal is to keep the clock period relatively

constant over a wide range of bitwidths and formats.

Therefore we have to add more pipeline stages for wider

bitwidth formats as a compromise. This results in a

slightly increasing latency with the increasing bitwidth.
Thus, the latency of our floating-point divide and square

root is very short compared to most other divider and

square root implementations

CONCLUSION

This paper presents restoring and modified non restoring

algorithm for variable bits arithmetic include addition,

subtraction, multiplication, division and square root

calculation. The proposed design result will be an accurate

as far as the the output is concern. I try to optimized non

restoring algorithm to reduces on chip area and pipelining

will increases the speed performance. The result will be
extended for square root implementation of 64 bit floating

point number and also it can be expanded to larger

numbers to solve complicated square root problem in

FPGA implementation.

REFERENCES
 P. C. Diniz and G. Govindu. Design of Field-Programmable Dual-precision

[1] Floating-Point Arithmetic Units. In Proceedings of the 16th

international conference on field-programmable logic and

applications (FPL’06), pages 733–736, August 2006.

[2] J. Janhunen, P. Salmela, O. Silv´en, and M. Juntti,“Fixed- versus

floating-point implementation of MIMOOFDM detector,” in Proc.

IEEE Int. Conf. Acoustics, Speech and Signal Processing, Prague,

Czech Republic,May 22–27 2011, pp. 3276–3279.

[3] T. M. Bruintjes, K. H. G. Walters, S. H. Gerez, B. Molenkamp, and

G. J. M. Smit, “Sabrewing: A lightweight architecture for combined

floating-point and integer arithmetic,” ACM Trans. Archit. Code

Optim.vol. 8, no. 4, pp. 41:1–41:22, Jan. 2012.

[4] IEEE Standards Board and ANSI. IEEE Standard for Binary

Floating-Point Arithmetic.IEEE Press, 1985. IEEE Std 754-1985.

[5] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of High-
Parallel and Distributed.Processing Symp., pp. 149b, April 2004.

[6] M. K. Jaiswal and R. C. Cheung. High performance reconfigurable
Reconfigurable Computing:Architectures, Tools and Applications,

pages 302–313. Springer, 2012.

[7] Altera Corp. Stratix v website. http://
www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp.

