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Abstract:  Computers were originally built as fast, reliable and accurate computing machines. It does not matter how 

large computers get, one of their main tasks will be to always perform computation. Most of these computations need 

real numbers as an essential category in any real world calculations. Real numbers are not finite; therefore no finite, 

representation method is capable of representing all real numbers, even within a small range. Thus, most real values 

will have to be represented in an approximate manner. The scope of this paper includes study and implementation of 

Adder/Subtractor and Multiplication ,Division and Square root functional units using HDL for computing arithmetic 

operations and functions suited for hardware implementation. In this paper, we present pipelined architecture to 

implement Variable bit floating point Arithmetic in Field Programmable Gate Array (FPGA). Specially we designed 

square root of floating point numbers using modified non restoring square root algorithm.  This algorithm has been 

optimized by eliminating a number of elements without compromising the precision of the square root and the 

remainder. The algorithms are coded in VHDL and validated through extensive simulation. These are structured so that 
they provide the required performance i.e. speed and gate count. It is an improvement over non restoring algorithm as it 

uses only subtract operation and append 01 instead of add operation and append 11. Here the basic building block is 

Controlled Subtract Multiplex (CSM). By using this module, the algorithm can be designed for any number of input 

bits. This strategy offers an efficient use of hardware resources. The modified non restoring algorithm is designed using 

VHDL and implemented on ALTERA cyclone II FPGA. The implementation results show reduced area in terms of 

logic elements when compared to restoring algorithm. 
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I. INTRODUCTION 

Nowadays, floating point Arithmetic is very important for 

several applications in digital signal and image processing, 

computer graphics and scientific computing . But division 

and square root is the most time consuming operation 

among four arithmetic operations.  

 

Designing a high-speed reciprocal unit is very useful for 

division operation because the division can be replaced as 
the following method: the reciprocal of divisor is 

computed at first, and then it is used as the multiplier in a 

subsequent multiplication with the dividend.  

 

If several divisions by the same divisor need to be 

performed, this method is particularly efficient, since once 

the reciprocal of divisor is found for the first division, each 

subsequent division involves just one additional 

multiplication. 

 

The square root function is widely used in computer 
graphics, image and signal processing, statistics, 

communications and scientific calculation applications.  

 

Due to complications involved in implementation of 

square root algorithms, its design in digital system has 

always been a bottleneck. The basic operations like 

addition and subtraction are easy to implement in an  

 

 

FPGA because synthesis tools have optimized 

addition/subtraction units based on FPGA architecture. 

Multiplication, division and square root are complex 

operations; square root in particular, is computationally 

intensive as it involves convergence and approximation 

techniques.  

 

Many algorithms/methods have been developed to 
implement it on FPGAs. But there is a need of an 

algorithm which should be more efficient in terms of time, 

speed and on-chip area. 

 

During the recent years field programmable gate arrays 

(FPGA’s) have become the dominant form of 

programmable logic. In comparison to previous 

programmable devices like programmable array logic 

(PAL) and complex programmable logic devices 

(CPLD’s), FPGA’s can implement far larger logic 

functions. 
 

 FPGA’s supports sufficient logic to implement complete 

systems and sub-systems. FPGA exploit the increasing 

capacity of integrated circuits to provide designers with 

reconfigurable logic that can be programmed on 

application-specific basis. 
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Fig 1. Flow graph of Proposed design 

 

In this paper, we study restoring and modified non 

restoring square root algorithm and implement them using 

pipelined architecture in VHDL. This approach uses CSM 

as a basic building block. The block has been modified for 
implementing restoring algorithm. These blocks have been 

optimized to reduce the number of logic cells utilized. The 

performance is compared based on logic elements and 

power consumption using ALTERA Stratix-II FPGA. 

 

Variable Length Floating Point Addition/subtraction 

Module  

Floating Point Addition is one of the complex unit in the 

floating point arithmetic operations. Addition / subtraction 

is the most basic arithmetic operation. The hardware 

implementation of this arithmetic for floating point 

numbers is a complicated operation due to the requirement 
of normalization. A proposed implementation method of 

Variable bit floating point adder/subtractor has been 

shown here. The flowchart for Floating Point 

adder/subtractor is shown in Fig. 1. Here the term addition 

is used to refer to both addition and subtraction as the 

same hardware is used in both cases. 

 

The steps for computing addition of two floating point 

numbers proceeds as follows, 

 

1. Compare exponents and mantissa of both 
numbers. Decide large exponent & mantissa and small 

exponent & mantissa. 

2. Right shift the mantissa associated with the 

smaller exponent, by the difference of exponents. 

3. Add both mantissa if signs are same else subtract 

smaller mantissa from large one. 

4. Do the rounding of the result after mantissa 

addition. 

5. If the subtraction results in loss of most 

significant bit (MSB), then the result must be normalized. 

To do this, the most significant non-zero entry in the result 
mantissa must be shifted until it reaches the front. This is 

accomplished by a “Leading one detector (LOD)” 

followed by a shift. 

6. Do normalization and adjust large exponent 

accordingly. 

7. Final result includes sign of larger number, 

normalized exponent and mantissa. 

 

Implementation of Floating Point Multiplier  

Floating Point Multiplication Algorithm  

Multiplying two numbers in floating point format is done 
as follows.   

1. Adding the exponent of the two numbers then 

subtracting the bias from their result.  

2. Multiplying the significand of the two numbers. 

3. Calculating the sign by XORing the sign of the 

two numbers.  

 

 

Fig. 2 Flow Chart of Variable Length Floating Point 

Addition/ subtraction  Module 

In order to represent the multiplication result as a 

normalized number there should be 1 in the MSB of the 

result (leading one).The following steps are necessary to 
multiply two floating point numbers.  

1. Multiplying the significand, i.e., (1.M1*1.M2) . 

2. Placing the decimal point in the result . 

3. Adding the exponents, i.e., (E1 + E2 – Bias) . 

4. Obtaining the sign i.e. s1 xor s2 . 

5. Normalizing the result, i.e., obtaining 1 at the 

MSB of the results ‟significand” . 

6. Rounding the result to fit in the available bits . 

7. Checking for underflow/overflow occurrence. 
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Fig. 3 Multiplier structure with rounding and exceptions 

 

To Perform the Division Operation in VHDL  

The algorithm for floating point multiplication is  

explained through flow chart in Figure 4. Let N1 and N2  

are  normalized operands represented by S1, M1, E1 and  

S2, M2, E2 as their respective sign bit, mantissa  

(significand) and exponent. If let us say we consider  

x=N1 and d=N2 and the final result q has been taken as  
“x/d”. 

 

Fig 4. Flow Chart of Division Operation 

Again the following four steps are used  for  floating point 

division. 

 

1. Divide signifcands, subtract exponents, and 

determine sign  
M=M1/M2  

E=E1-E2  

S=S1XORS2  

2. Normalize Mantissa M (Shift left or right by 1) 

and update exponent E  

3. Rounding the result to fit in the available bits  

4. Determine exception flags and special values  

 

The sign bit calculation, mantissa division, exponent 

subtraction (no need of bias subtraction here), rounding 

the result to fit in the available bits and normalization is 
done in the similar way as has been described for 

multiplication. 

 

Pipelining is a well known technique for achieving faster 

clock rates while sacrificing latency. Pipeling offers an 

economic way to realize temporal parallelism in digital 

systems. To achieve pipelining one must subdivide the 

input process into a sequence of subtasks each of which 

can be executed by specialized hardware stage that 

operates concurrently with other stages in the pipeline. In 

the present method, five stage pipelining is incorporated 

for faster performance. 

 

The square root algorithm 

A small modification in non restoring algorithm makes 

calculation faster. It uses only subtract operation and 

appends  “01”. It uses n stage pipelining to find square 

root of 2n bit  number. The following algorithm describes 
the modified  non restoring square root algorithm.  

Step 1: Start  

Step 2: Initialize the radicand (M) which is 2n bit number.  

             Divide the radicand in two bits beginning at 

decimal   

             point in both directions.  

Step 3: Beginning on the left (most significant), select the 

first  

             group of one or two bits. (If n is odd then first 

group  

             has one bit, else two bits.)  

Step 4: Select the first group of bits and subtract‟ 01‟ from 
it.  

             If borrow is zero, result is positive  then quotient 

is 1  

             otherwise it is 0.  

Step 5: Append 01(to be subtracted next two bits of 

dividend)  

             and quotient to subtract from  remainder of 

previous  

             stage.  

Step 6: If result of subtraction is negative, write previous  

            remainder as it is and quotient is considered as 0, 
else  

            write the difference as remainder and quotient as 1.  

Step 7: Repeat step 5 and step 6 until end group of two 

bits.  

Step 8: End.  

 

 

Fig 5. Internal structure of CSM block 

From Fig. it is clear that Controlled Subtract 

Multiplex(CSM) is a combination of full subtractor and 

2:1 multiplexer. Multiplexer is used to select one of the 

inputs based on one bit quotient which acts as a select line 

for multiplexer. 
 

From the algorithm, it can be concluded that if the result 

of subtraction is negative (which will set the borrow bit to 

1), quotient “u” is selected as 0 which ultimately selects 

the input “x” for the next iteration. Also if the result of 

subtraction is positive which gives 0 as a borrow, quotient 
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is selected as 1. This sets select line to 1 which gives 

difference “d” as input for next iteration. 

Inputs to the CSM block are x, y, b and u whereas d and b0 

(borrow) are outputs. 

If b0 = 0, 

then d < = x-y-b else d < = x. 

As CSM includes full sub tractor having x, y and b as its 

inputs, it works as follows: 

1) It performs subtraction : x- y - b 

2) If the result of subtraction is positive, we get b0 = 0, u 
=1     and d = x-y-b 

3) If the result of subtraction is negative, we get b0 = 1, 

The generalization of simple implementation of modified 

non restoring digit by digit algorithm for unsigned 6 bit 

square root is shown in Fig. For 6 bit input number, 3 bit 

quotient(u2u1u0) is obtained as answer. 

Each row of the circuit executes one iteration of non 

restoring digit by digit square root algorithm, where it only 

uses subtract operation and appends „01‟. In the pipelined 

structure using CSM block, some input patterns are fixed. 

So , the design can be optimized by minimizing the 

Boolean equations of b0 and d. It can be implemented by 
modifying CSM block 

 

Fig. 6. Pipelined structure of 6 bit unsigned square root 

number. 

 

EXPERIMENTAL RESULT 

The proposed architecture was implemented using VHDL 

and synthesized on a Altera Stratix II  FPGA with 

simulation on the Quartus-II . Some sample result is 
shown in Tab1.  

 

Table 4.1: Area, Latency and Throughput for Floating-

Point Division 
F P Format 8(2,5) 16(4,11) 24(6,17) 32(8,23) 40(10,29) 

slices 66 

(1%) 

115 

(1%) 

281 

(1%) 

361 

(1%) 

617 (1%) 

Block 

RAMs 

1 

(1%) 

1 (1%) 1 (1%) 7 (4%) 62 (43%) 

embdd 
multipliers 

2 

(1%) 

2 (1%) 8 (5%) 8 (5%) 8 (5%) 

clock 
period (ns) 

4.9 6.8 7.8 7.7 8.0 

max freq. 

(MHz) 

202 146 129 129 125 

latency (clk 
cycle) 

10 10 14 14 14 

latency (ns) 49 68 109 108 112 

 

Table 4.1: Area, Latency and Throughput for Floating-

Point Square root. 
F P 
Format 

8(2,5) 16(4,11) 24(6,17) 32(8,23) 48(10,38) 

slices 85 

(1%) 

172 

(1%) 

308 

(1%) 

351 

(1%) 

779 (2%) 

Block 
RAMs 

3 

(2%) 

3 (2%) 3 (2%) 3 (2%) 13 (9%) 

embdd 
multiplier 

4 

(2%) 

7 (4%) 9 (6%) 9 (6%) 16 (11%) 

clock 
period (ns) 

 6.1 7.2 7.8 8.0 8.8 

max freq. 
(MHz) 

165 139 129 125 114 

latency 
(clk cle) 

9 12 13 13 16 

latency 
(ns) 

55 86 101 104 140 

Comparison of our Floating-Point Divide and Square 

Root and Xilinx Floating-Point IP Cores 

The algorithms we use are not digit-recurrence as are most 

other divider and square root implementations. As a result, 

the latency does not increase linearly as the data bitwidth 

grows. Our goal is to keep the clock period relatively 

constant over a wide range of bitwidths and formats. 

Therefore we have to add more pipeline stages for wider 

bitwidth formats as a compromise. This results in a 

slightly increasing latency with the increasing bitwidth. 
Thus, the latency of our floating-point divide and square 

root is very short compared to most other divider and 

square root implementations 
 

CONCLUSION 

This paper presents restoring and modified non restoring 

algorithm for variable bits arithmetic include addition, 

subtraction, multiplication, division and square root 

calculation. The proposed design result will be an accurate 

as far as the the output is concern. I try to optimized non 

restoring algorithm to reduces on chip area and pipelining 

will increases the speed performance. The result will be 
extended for square root implementation of 64 bit floating 

point number and also it can be expanded to larger 

numbers to solve complicated square root problem in 

FPGA implementation. 
 

REFERENCES 
           P. C. Diniz and G. Govindu. Design of Field-Programmable Dual-precision 

[1] Floating-Point Arithmetic Units. In Proceedings of the 16th 

international conference on field-programmable logic and 

applications (FPL’06), pages 733–736, August 2006. 

[2] J. Janhunen, P. Salmela, O. Silv´en, and M. Juntti,“Fixed- versus 

floating-point implementation of MIMOOFDM detector,” in Proc. 

IEEE Int. Conf. Acoustics, Speech and Signal Processing, Prague, 

Czech Republic,May 22–27 2011, pp. 3276–3279. 

[3] T. M. Bruintjes, K. H. G. Walters, S. H. Gerez, B. Molenkamp, and 

G. J. M. Smit, “Sabrewing: A lightweight architecture for combined 

floating-point and integer arithmetic,” ACM Trans. Archit. Code 

Optim.vol. 8, no. 4, pp. 41:1–41:22, Jan. 2012. 

[4] IEEE Standards Board and ANSI. IEEE Standard for Binary 

Floating-Point Arithmetic.IEEE Press, 1985. IEEE Std 754-1985. 

[5] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of High- 
Parallel and Distributed.Processing Symp., pp. 149b, April 2004. 

[6] M. K. Jaiswal and R. C. Cheung. High performance reconfigurable 
Reconfigurable Computing:Architectures, Tools and Applications, 

pages 302–313. Springer, 2012. 

[7] Altera Corp. Stratix v website. http:// 
www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp. 


